Splines on Surfaces

نویسنده

  • Marian Neamtu
چکیده

This chapter addresses the topic of \splines on surfaces", an area of spline theory concerned with the construction of functions deened on manifolds in the three-dimensional Euclidean space. For the most part, the mathematical aspects of this discipline are an unchartered territory and therefore much of what we will say here will have an exploratory character.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal energy surfaces using parametric splines

We explore the construction of parametric surfaces which interpolate prescribed 3D scattered data using spaces of parametric splines defined on a 2D triangulation. The method is based on minimizing cettain natura1 energy expressions. Several examples involving filling hoies and crowning surfaces are presented, and the role of the triangulation as a Parameter is explored. The problem of creating...

متن کامل

000 Society for Industrial and Applied Mathematics Dimension and Local Bases of Homogeneous Spline Spaces*

Recently, we have introduced spaces of splines deened on triangulations lying on the sphere or on sphere-like surfaces. These spaces arose out of a new kind of Bernstein-B ezier theory on such surfaces. The purpose of this paper is to contribute to the development of a constructive theory for such spline spaces analogous to the well-known theory of polynomial splines on planar triangula-tions. ...

متن کامل

Exploring Expo-Rational B-splines for Curves and Surfaces

We introduce expo-rational B-splines for curves and surfaces and explore for the first time some properties of these new splines which depend not only on their knot vector but also on their intrinsic parameters and the geometry and parametrization of the local curves/surfaces. We consider several examples, discuss some computational aspects, and address potential applications in shape design. §

متن کامل

Dimension and Local Bases of Homogeneous Spline Spaces

Recently, we have introduced spaces of splines deened on trian-gulations lying on the sphere or on sphere-like surfaces. These spaces arose out of a new kind of Bernstein-B ezier theory on such surfaces. The purpose of this paper is to contribute to the development of a constructive theory for such spline spaces analogous to the well-known theory of polynomial splines on planar triangulations. ...

متن کامل

Computer aided geometric design with Powell-Sabin splines

Powell-Sabin splines are C-continuous quadratic splines defined on an arbitrary triangulation. Their construction is based on a particular split of each triangle in the triangulation into six smaller triangles. In this article we give an overview of the properties of Powell-Sabin splines in the context of computer aided geometric design. These splines can be represented in a compact normalized ...

متن کامل

Reconstruction of Smooth Surfaces with Arbitrary Topology Adaptive Splines

We present a novel method for tting a smooth G 1 continuous spline to point sets. It is based on an iterative conjugate gradient optimisation scheme. Unlike traditional tensor product based splines we can t arbitrary topology surfaces with locally adaptive meshing. For this reason we call the surface \slime". Other attempts at this problem are based on tensor product splines and are therefore n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001